PC-1696/M

L-4/2050

MATHEMATICAL METHODS-MM-716/AMC-425

(Semester-IV)

(Common for Math/AMC)

Time: Two Hours] [Maximum Marks: 70

Note: Attempt any *four* questions. All questions carry equal marks.

I. (a) Form an integral equation corresponding to the differential equation with the given conditions

$$y'' - 2xy = 0$$
, $y(0) = 1/2$, $y'(0) = y''(0) = 1$.

- (b) Find the solution of volterra integral equation of the second kind by the method successive substitutions.
- II. (a) Solve by iterative method

$$y(x) = 1 + \lambda \int_{0}^{\pi} \sin(x+t)y(t) dt.$$

(b) Find the resolvent kernel for Volterra integral equation $K(x, t) = e^{x-t}$.

III. (a) Show that between Fredholm determinant $D(\lambda)$ and Fredholm's first minor $D(x, y; \lambda)$ the following relation holds

$$D(x, y; \lambda) - \lambda K(x, y) D(\lambda) = \lambda \int_{a}^{b} D(x, t; \lambda) k(t, y) dt$$

for all values of λ and for all x and y on rectangle R.

- (b) Show that the series $D(x, y; \lambda)$ converges absolutely and uniformly in λ and on $R: a \le x \le b$ and $a \le y \le b$.
- IV. State and prove Fredholm first fundamental theorem.
- V. (a) Find the curve passing through (x_0, y_0) and (x_1, y_1) which generates the surface of minimum area when rotated about the *x*-axis.
 - (b) Find the general solution of Euler's equation corresponding to the functional

$$I(y) = \int_{0}^{b} f(x) \sqrt{1 + {y'}^{2}} dx$$
 where $f(x) = x$.

VI. (a) Calculate the variational derivative at the point x_0 of the quadratic functional

$$J[y] = \int_a^b \int_a^b k(s,t) \ y(s) \ y(t) \ dsdt.$$

(b) Obtain a necessary condition for the curve
$$y_i = y_i(x)$$
 $(i = 1, 2, n)$ to be an extremal of the functional
$$\int_a^b f(x, y_1, y_2, y_n \ y_1', y_n') dx$$
 is that the functions $y_i(x)$ satisfy the Euler equation $F y_i - \frac{d}{dx} F y_i' = 0$. $(i = 1, ..., n)$

- VII. (a) Determine the geodesic on the surface of a right circular cylinder.
 - (b) Show that a necessary and sufficient condition for the functional $\int_{t_0}^{t_1} \Phi(t, x, y, \dot{x}, \dot{y}) dt$ to depend only on the curve in the xy-plane defined by x = x(t), y = y(t) and not on the choice of the parametric representation of the curve.
- VIII. (a) Find an extremal in the following isoperimetric problem $J[y(x, z(x))] = \int_{0}^{1} (y'^{2} + z'^{2} 4xz 4z)dx$, when y(0) = z(0) = 0, y(1) = z(1) = 1 and $\int_{0}^{1} (y'^{2} xy'^{2} z'^{2})dx = 2$.
 - (b) Determine the curve of length which passes through (0, 0) and (1, 0) and for which the area I between the curve and x-axis is maximum.

IX. (a) Define volterra integral equation of first kind.

- (b) Define linear and non-linear integral equations.
- (c) Define Fredholm integral equation of third kind.
- (d) State Schwarz's inequality.
- (e) State Neumann interior and exteria problem.
- (f) Define functional.
- (g) Solve $I(y) = \int_{a}^{b} F(x, y,)dx$, where F does not dependent explicitly on y'.
- (h) Define Geodesic.
- (i) State Brachistochrone problem.
- (j) State Fermat's principle.