D-10/2110

5552/NJ

CSM 352: Abstract Algebra Semester 5

Time Allowed: 2 Hours Maximum Marks: 45

Note: - Attempt any *four* questions. Each question carries equal marks.

- Q1.a) Prove that the set of all 2×2 matrices with entries from \square and determinant 1 is a group under matrix multiplication.
 - b) Check whether $G = \{2, 4, 6, 8\}$ under multiplication modulo 10 is a Group?
- Q2.a) Write all symmetries of rectangle. Show that these symmetries form Klein 4-group b)If H and K are subgroups of G and g belongs to G, then show that $g(H \cap K) = gH \cap gK$.
- Q3.a) Find the Kernel of the homomorphism $f: Z \to Z_n$ given by $f(x) = \bar{x}$.
 - b) Show that $Z \times Z$ is not cyclic group.
- Q4.a) Give an example of a group G having subgroups H and K such that H is normal in K and K is normal in G but K is not normal in G.
 - b) Prove that every permutation of a finite set can be written as a cycle or as a product of disjoint cycles.
- Q5.a) Let order of cyclic group is n. Show that if ddividesnthen number of elements of order d in a cyclic group of order n is $\emptyset(d)$.
 - b) If $f: G \to G$ s.t $f(x) = x^n$ is an automorphisms of G. Then show $a^{n-1} \in Z(G) \ \forall \ a \in G$.
- Q6. If R is a commutative ring then show that the principal ideal

$$(a) = \{ar + na : r \in R, n \in Z\}$$

- Q7.Let R be a PID which is not a field. Show that an ideal A is maximal if and only if A is generated by irreducible element.
- Q8.Let R be a commutative ring with unity and A be an ideal of R. Then Show that

$$\frac{R[x]}{A[x]} \cong \frac{R}{A}[x]$$

Q9.Let $M = \left\{ \begin{pmatrix} a & 0 \\ 0 & 0 \end{pmatrix} : a \in R \right\}$ where R is any ring. Show that $\theta : M \longrightarrow R$ s.t. $\theta \begin{pmatrix} a & 0 \\ 0 & 0 \end{pmatrix} = a$ for all $\begin{pmatrix} a & 0 \\ 0 & 0 \end{pmatrix} \in M$ is an isomorphism.