F-42/2110

LINEAR INTEGRAL EQUATIONS-505

SEMESTER-V

SYLLABUS-DECEMBER- 2019

TIME ALLOWED 3 Hrs

M.M 70

NOTE:

The candidates are required to attempt two questions each from Section A & B Section C will be compulsory

Section A

- 1. Reduce the differential equation $y''(x) 3y'(x) + 2y(x) = 4\sin x$ with the conditions y(0) = 1, y'(0) = -2 into an integral equation.
- 2. (a) Show that the function $\phi(x) = (1+x^2)^{-3/2}$ is a solution of the Volterra integral equation $\phi(x) = \frac{1}{1+x^2} \int_0^x \frac{\xi}{1+x^2} \phi(\xi) \, d\xi.$
 - (b) Find the first two iterated kernels of the kernel $K(x,\xi) = (x-\xi)^2$; a = -1, b = 1.
- 3. Solve the non-homogenous Fredholm's integral equation of the second kind, by the method of successive approximations to the third order. $\phi(x) = 2x + \lambda \int_0^1 (x + \xi) \phi(\xi) d\xi$, $\phi_0(x) = 1$.
- 4. With the aid of the resolvant kernel, find the solution of the integral equation $\phi(x) = e^{x^2} + \int_0^x e^{x^2 \xi^2} \phi(\xi) d\xi.$

Section B

- 5. Determine $D(\lambda)$ and $D(x, \xi; \lambda)$ for the kernel $K(x, \xi) = x\xi$ with specified limits of a and b as a = 0, b = 10.
- 6. State and Prove Hadamard's theorem.
- 7. Solve the following integral equation: $\phi(x) = e^x + \lambda \int_0^1 2e^x e^{\xi} \phi(\xi) d\xi$.
- 8. Prove that the series $D(\lambda)$ converges absolutely and permanently in λ .

Section C

2×10=20

9. Write in short:

- a) Reduce the initial value problem $y' 3x^2y = 0$, $\mathbf{y}(0) = 1$ to the Volterra integral equation.
- b) Find the resolvent kernel associated with the following kernel $K(x, \xi) = |x \xi|$ in the interval (0,1).
- c) State Dirichlet's and Neumann's problems.
- d) Write Fredholm's and Volterra linear integral equation.
- e) Show that the integral equation $f(x) = \lambda \int_0^{\pi} (\sin x \sin 2\xi) f(\xi) d\xi$ has no eigenvalues.
- f) Find the first two iterated kernels of the kernel $K(x,\xi) = (x-\xi)^2$; a=-1,b=1.
- g) Write the Fredholm's fundamental relations.
- h) State Fredholm's first fundamental relation.
- i) State Schwarz's inequality.
- j) Write the difference between $D(\lambda)$ and $D(x, \xi; \lambda)$.