B-5/2110 ADVANCED CALCULUS -I SEMESTER-III

TIME ALLOWED 3 Hrs

M.M 40

NOTE: The candidates are required to attempt two questions each from Section A & B Section C will be compulsory.

SECTION-A

I (a) Let f: $\mathbb{R}^2 \to \mathbb{R}$ be defined by $f(x, y) = \begin{cases} 0 & \text{if } x \text{ is rational} \\ 1 & \text{if } x \text{ is irrational} \end{cases}$

Show that f is not continuous at any point of R2

(3)

I (b) If
$$u = \log(x^3 + y^3 + z^3 - 3xyz)$$
, then show that $\left(\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} + \frac{\partial u}{\partial z}\right)^2 = \frac{9}{(x+y+z)^2}$ (3)

II State and prove Young's Theorem.

(6)

III (a) Prove that $J_{f^{-1}}(\alpha,\beta)=\alpha$ for any (α,β) belonging to the range of f(x,y), where

$$f(x,y) = \left(\sqrt{x^2 + y^2}, \tan^{-1}\frac{y}{x}\right). \tag{3}$$

III (b) Use Taylor's theorem to expand $x^2y + 3y - 2$ in powers of x - 1 and y + 2 (3)

IV Find the lengths of the axes of the section of ellipsoid $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$ by

the plane lx + my + nz = 0 (6)

SECTION-B

V (a) Prove that
$$\int_0^1 \left(\int_0^1 \frac{x-y}{(x+y)^3} \, dy \right) dx \neq \int_0^1 \left(\int_0^1 \frac{x-y}{(x+y)^3} \, dx \right) dy$$
 (3)

V (b) Evaluate $\int_0^\infty \int_0^x xe^{-\frac{x^2}{y}} dy dx$ by changing the order of integration. (3)

VI Prove that
$$\iint \sqrt{|y - x^2|} \, dx \, dy = \frac{3\pi + 8}{6}$$
 over $Area A = [-1, 1] \times [0, 2].$ (6)

VII (a) Find centroid of the hemispherical region

$$A = \{(x, y, z): x^2 + y^2 + z^2 \le 1, z \ge 0\} \text{ where density } \mu(x, y, z) = x^2$$
 (3)

VII (b) Find moment of inertia of the cylinder $x^2 + y^2 \le a^2$, $0 \le z \le h$ with uniform mass density 1 about the z-axis.

(3)

VIII (a) Find the volume of the portion of the sphere $x^2 + y^2 + z^2 = a^2$ lying inside

The cylinder
$$x^2 + y^2 = ax$$
. (3)

VIII (b) Evaluate
$$\iiint \frac{dxdydz}{\sqrt{x^2+y^2+(z-2)^2}}, over region sphere x^2 + y^2 + z^2 \le 1$$
 (3)

SECTION-C

IX (a) Show that the functions u = x + y - z, v = x - y + z, $w = x^2 + y^2 + z^2 - 2yz$

Are not independent of one another.

PUP(O)-9240-50,000/2-19

P. To

IX (b) If z = f(x, y) is a homogeneous function of x and y of degree n, then show that

$$x\frac{\partial z}{\partial x} + y\frac{\partial z}{\partial y} = nz$$

- IX (c) State Schwarz's Theorem.
- IX (d) Shoe that point (0, 0) is a saddle point of the function $f(x,y) = x^3 + y^3 + 3xy$.
- IX (e) Find the centroid of a cubic box with side 2 unit and density 1
- IX (f) If a region A is defined as $A = \{(x, y): 0 \le x \le 3, 2 \le y \le 5\}$,

then show that $108 \le \iint (2x^2 + 3y^2) dx dy \le 837$.

IX (g) Evaluate $\iint r^2 dr d\theta$ over the area included between circles $r=2\sin\theta$ and $r=4\sin\theta$.

IX (h) Evaluate $\iiint (z^5 + z) dx dy dz$ over region $V = \{(x, y, z): x^2 + y^2 + z^2 \le 1\}$

 $(2 \times 8 = 16)$