A-S-2110

LINER ALGEBRA-III SEMESTER-I

TIME 3 HOURS

MM: 40

Note: The candidates are required to attempt two questions each from Section A & B, Section C will be compulsory.

SECTION-A

I State Cayley-Hamilton theorem, verify this theorem for the matrix
$$A = \begin{bmatrix} 1 & 3 & 7 \\ 4 & 2 & 3 \\ 1 & 2 & 1 \end{bmatrix}$$
 (6)

II (a) If A is an
$$\times$$
 n matrix and $\rho(A) = n - 1$, show that $\rho(adj.A) = 1$ (3)

II (b) Find the values of a such that the rank of the matrix
$$A = \begin{bmatrix} 3a-8 & 3 & 3 \\ 3 & 3a-8 & 3 \\ 3 & 3 & 3a-8 \end{bmatrix}$$
 is ≤ 2

Also find the rank for these values of a. (3)

III (a) Find the values of λ and μ so that the system of equations

$$x + y + z = 6$$
, $x + 2y + 3z = 10$, $x + 2y + \lambda z = \mu$

III (b) If equations x = cy + bz, y = az + cx, z = bx + ay have a non-trivial solution,

then show that the solutions are given by $x=\lambda\sqrt{1-a^2},\ y=\lambda\sqrt{1-b^2},\ z=\lambda\sqrt{1-c^2}$,

where λ is any real number. (3)

IV (a) Diagonalize the matrix
$$A = \begin{bmatrix} 1 & 2 \\ 3 & 2 \end{bmatrix}$$
 , if possible. (3)

IV (b) Using Gauss Jordan Method, find the inverse of matrix
$$A = \begin{bmatrix} 2 & 0 & -1 \\ 5 & 1 & 0 \\ 0 & 1 & 3 \end{bmatrix}$$
 (3)

SECTION-B

V Prove that there exist a basis for each finite dimensional vector space. (6)

VI Let V be the set of all $n \times n$ skew-symmetric matrices over field **R.** Let vector addition and scalar

Multiplication be defined as usual addition of matrices and multiplication of a scalar

VII (a) Let V be a finite dimensional vector space over a field F and $T; V \to V$ be a linear

operator. Show that $Range(T) \cap Ker(T) = \{0\}$ if and only if

for all
$$v \in V$$
, $T(T(v)) = 0 \Rightarrow T(v) = 0$ (3)

VII (b) Let T be a linear operator defined on \mathbb{R}^2 defined by

$$T(x,y) = (x+2y,3x+4y)$$
. Find $p(T)$, where $p(T) = t^2 - 5t - 2$ (3)

VIII If the matrix of a linear operator T on \mathbb{R}^3 relative to the standard basis

$$is \begin{bmatrix} 1 & 1 & -1 \\ -1 & 1 & 1 \\ 1 & -1 & 1 \end{bmatrix}$$
, then find the matrix T relative to the basis B = {(1,2,2), (1,1,2),(1,2,1)}

Hence verify that [T;B] [v; B] = [T(v);B]
$$\forall w \in \mathbb{R}^3$$

(6)

SECTION-C

- IX (a) If λ is an eigen value of an invertible matrix A over R, then prove that $\frac{|A|}{\lambda}$ is an eigen value of adj A.
- IX (b) Show that the row vectors of matrix $A = \begin{bmatrix} 1 & -1 & 2 \\ -1 & 2 & -4 \\ -1 & -1 & 2 \end{bmatrix}$ are linearly dependent.
- IX (c) Find rank of a matrix $A = \begin{bmatrix} 2 & 3 & 3 \\ 3 & 6 & 12 \\ 2 & 4 & 8 \end{bmatrix}$
- IX (d) Does the following system of equations have a mon-zero solution?

$$x + 2y + 3z = 0$$
, $3x + 4y + 4z = 0$, $7x + 10y + 12z = 0$

- IX (e) If W is a subspace of a finite dimensional vector space V over a field F, then prove that $\dim W \leq \dim V$
- IX (f) Prove that intersection of two subspaces of a vector space is also a subspace.
- IX (g) Let V be a vector space over a field F. Suppose a finite subset $S = \{x_1, x_2, x_3, \dots, x_n\}$ of non-zero elements of V is linearly dependent, then prove that some element say x_k of S can be written as a linear combination of remaining elements of S.
- IX (h) Give an example of a linear operator T such

that
$$T \neq 0, T^2 \neq 0, T^3 \neq 0, \dots, T^{n-1} \neq 0$$
, but $T^n = 0$. (2×8 = 16)