## A-2110

## DIFFERENTIAL EQUATIONS-II SEMESTER-I

## TIME 3 HOURS

MM: 40

Note: The candidates are required to attempt two questions each from Section A & B, Section C will be compulsory.

Section A (6X2=12)

Q1 i) Solve 
$$y - x \frac{dy}{dx} = a(y^2 + \frac{dy}{dx})$$

ii) Solve 
$$(2\sqrt{xy} - x)dy + ydx = 0$$

Q2 i) Solve 
$$y \sin 2x \, dx - (1 + y^2 + \cos^2 x) dy = 0$$

ii) Solve 
$$\frac{dy}{dx} + x\sin 2y = x^3\cos^2 y$$

Q3 Solve 
$$(D^2 + a^2)y = \cos ax$$

Q4 Use method of variation of parameters to solve 
$$y'' + y = \frac{1}{1 + \sin x}$$

Q5 Solve 
$$[(1+2x)^2D^2 - 6(1+2x)D + 16]y = 8(1+2x)^2$$

Q6. Find the general solution of 
$$y'' + (x - 3)y' + y = 0$$
 near x=2.

Q7 Show that 
$$(n + 1)P_n = P'_{n+1} - xP'_n$$

Q8 Show that 
$$J_n(x) = \frac{1}{\pi} \int_0^{\pi} \cos(n\varphi - x\sin\varphi) d\varphi$$
, where n is positive integer.

- Q9 i) Find the differential equation of all circles tangent to y axis.
- ii) Define Wronskian. Show that the vectors  $e^{2x}$  and  $e^{3x}$  are linearly independent vectors.
- iii) Check whether the given differential equation is exact or not and hence solve

$$ydx - xdy + (1+x^2)dx + x^2sinydy = 0$$

iv) Integrate 
$$(1 + x^2) \frac{dy}{dx} + 2xy - 4x^2 = 0$$
.

v) State Rodrigue's formula

vi) Solve : 
$$(x^2D^2 + xD - 4)y = 0$$

vii) Determine whether x=0 is an ordinary point or regular singular point for the differential equation

$$2x^{2}y'' - xy' + (x - 5)y = 0$$

viii) For Bessel's function  $J_n(x)$ , find out a and b, where  $\frac{d}{dx}J_n(x) = aJ_{n-1}(x) + bJ_{n+1}(x)$