A/2110

10777/NH

BA Ist Sem.: Coordinate Geometry

Time Allowed: 3 Hours

Maximum Marks: 40

Note: - Attempt any two questions each from section-A and section-B. compulsory.

Section-A

2×6=12

- The normal of the parabola $y^2=4ax$ from a point P meet the axis in A,B and C. If B is the middle point of AC, prove that the locus of P is $27ay^2 = 2(x - 2a)^3$. Q.2.
- Prove that the locus of the poles of the chord which subtend a right angle at the fixed point (h, k) is $ax^2 - hy^2 + (4a^2 + 2ah)x - 2aky + a(h^2 + k^2) = 0$.
- If two tangents to a parabola make equal angles with a fixed line, prove that the chord of contact must pass through a fixed point.
- Two parabolas have a common focus and their axis in opposite directions. Prove that the locus of the middle point of the chords of either which touch the other is another parabola.

Section-B

2×6=12

- Q.5. If normal of the ellipse at any point P cut the major axis in G, Prove that, for different positions of P, the locus of the middle point of PG will be an ellipse.
- If the pole of the normal at ${\it P}$ lies on the normal at ${\it Q}$ then prove that the pole of the normal at Q lies on the normal at the P.
- Prove that the portion of any tangent to a hyperbola intercepted by the asymptotes is bisected at the point of contact.
- Prove that the locus of the middle point of the chords of constant length 2d of the rectangular hyperbola $xy = c^2$ is $(x^2 + y^2)(xy - c^2) = d^2 xy$.

Section-C

2×8=16

Q.9.

- a) In an ellipse pair of conjugate diameters is produced to meet the directrix. Prove that the orthocentre of the triangle is so formed is the focus of the ellipse.
- b) The perimeter of triangle is 20, and the points (-2,3) and (-2,-3) are two vertices of it. Find the equation of the locus of the third vertex.
- Prove that the diameter intersects a parabola at the point of contact of the conjugate
- d) Prove that the locus of the point of intersection of two tangents to a parabola at points on the curve whose ordinates are in constant ratio is a parabola.
- e) Find the locus of the foot of the perpendicular drawn from the vertex on a tangent to the
- f) Prove that the locus of the poles of the normal chords of the parabola $y^2 = 4ax$ is $(x+2a)y^2=-4a^3.$
- g) Find the equation of the hyperbola with eccentricity $\frac{3}{2}$ and foci at $(\pm 2,0)$.
- h) Prove that the line $x\cos\alpha + y\sin\alpha = p$ touches the hyperbola $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$ if $p^2 = 1$ $a^2 \cos^2 \alpha - b^2 \sin^2 \alpha$.