Total Pages: 5

9890/NJ

F-47/2110

BUSINESS MATHEMATICS

Paper-BL-307

Semester-III

Syllabus-(Dec-15)

Time allowed: 3 Hours [Maximum Marks: 70

Note: The candidates are required to attempt two questions each from Section A and B. Section C contain 12 short questions, attempt any 10 short questions.

SECTION-A

- Explain the properties of determinants with suitable examples.
- 2. If

$$A = \begin{bmatrix} 1 & 3 & 4 \\ 3 & -1 & 6 \\ -1 & 5 & 1 \end{bmatrix}$$

verify that $A.A^{-1} = A^{-1}.A = I$

10

9890/NJ/617/W

[P.T.O.

- 3. Write notes on:
 - (i) Types of Annuities.
 - (ii) Valuation of Simple Loans and Debenture

5,5

4. Divide Rs. 6305 into three parts such that their amount at 5% compound interest (Chargeable annually) in 2, 3 and 4 years respectively, may all equal.

SECTION-B

- 5. What is linear programming problem? What are the assumptions in formulating linear programming problem? What are the major limitations?
- 6. Solve the L.P.P. by simplex method: 10

 Maximize $Z = 4x_1 + 3x_2 + 6x_3$ Subject to

$$2x_1 + 3x_2 + 2x_3$$
 440

$$4x_1 + x_2 + 3x_3$$
 470

$$2x_1 + 5x_2 + x_3$$
 430

where (x_1, x_2, x_3) 0

9890/NJ/617/W

2

7. A company is faced with the problem of assigning six different machines to five different jobs. The costs are estimated and given below:

				Jobs		
		$J_{\scriptscriptstyle 1}$	\mathbf{J}_2	${f J}_3$	$\mathbf{J}_{\scriptscriptstyle{4}}$	${f J}_5$ _
Machines	$\mathbf{M}_{\scriptscriptstyle 1}$	6	2	5	2	6
	${ m M}_2$	2	5	8	7	7
	\mathbf{M}_3	7	8	6	9	8
	${ m M_{\scriptscriptstyle 4}}$	6	2	3	4	5
	\mathbf{M}_{5}	9	3	8	9	7
	$\mathrm{M}_{\scriptscriptstyle{6}}$	4	7	4	6	8

Find the assignment pattern that minimises costs.

8. Solve the transportation problem and tests its optimality.

		Centres							
		$\mathbf{C}_{\scriptscriptstyle 1}$	\mathbb{C}_2	\mathbf{C}_3	$\mathrm{C}_{\scriptscriptstyle{4}}$	Supply			
Factories	$\overline{\mathbf{F}_{1}}$	10	8	7	12	500			
	$\overline{\mathrm{F}_{2}}$	12	13	6	10	500			
	\mathbf{F}_3	6	10	12	14	900			
Demand		700	550	450	300	1900			

SECTION-C

- 9. Attempt any ten short questions: $10\times3=30$
 - (i) Define orthogonal matrix.
 - (ii) Define scalar matrix and diagonal matrix.
 - (iii) What are the problems of sinking funds?
 - (iv) Distinguish between simple and compound interest.
 - (v) Define Matrix.
 - (vi) What is unbounded solution?
 - (vii) Define Primal and Dual.
 - (viii) Write the steps of Hungarian method.
 - (ix) What is Degeneracy in transportation problem?
 - (x) Define Redundant constraints.
 - (xi) What is prohibited assignment problem?
 - (xii) If principle amount is double in 6 years. What is compound rate of interest?