Roll No.

Total Pages: 3

4251/MJ

G-11/2051

NUMBER THEORY

Paper-BHM-601

Semester-VI

Time allowed: 3 Hours] [Maximum Marks: 70

Note: The candidates are required to attempt two questions each from section A and section B carrying 10 marks each and the entire Section C consisting of 10 questions carrying 3 marks each is compulsory.

SECTION-A

- 1. If P_n is the nth prime number then Prove that $P_n \ 2^{2^{n-1}}$.
- 2. State and Prove Fundamental theorem of arithmetic.

- 3. (a) If $ca = cb \pmod{n}$, then $a = b \pmod{n/d}$, where $d = \gcd(c, n)$.
 - (b) By using the definition of Congruence show that 41 divides $2^{20}-1$.
- 4. (a) State and prove Mobius Inversion Formula.
 - (b) State and Prove Euler's theorem.

SECTION-B

- 5. State and prove Euler's Criterion of Quadratic Residues.
- 6. Find the number of Farey fractions a/b of order n satisfying the inequalities 0 a/b 1.
- 7. Define Pell's equation. Prove that if d is a positive integer not a perfect square, then $h_n^2 dk_n^2 = (-1)^{n-1} q_{n-1}$ for all the integers n-1.
- 8. Prove that the continued fraction expansion of the real quadratic irrational number 'a' is purly

4251/MJ/488/W

periodic iff a > 1 and -1 < a * < 0. where a* is the conjugate of a.

SECTION-C

- 9. (i) Find the G.C.D of 117 and 45.
 - (ii) Find the index of 5 relative to each of the primitive roots of 13.
 - (iii) Show that 125671221 is divisible by 9.
 - (iv) Find the remainder when 2(28!) is divided by 31.
 - (v) State Chinese remainder theorem.
 - (vi) Find the solution of x^2 5(mod 29).
 - (vii) Find all the quadratic residue of 13.
 - (viii) Evaluate n of Gauss Lemma for (5/19).
 - (ix) Find the value of Jacobi Symbol $\left(\frac{22}{105}\right)$.
 - (x) Define rational approximations & give example.