Roll No.

Total Pages: 4

4421/MH

C-2051

ALGEBRA-II

Paper-III

Semester-VI

Time allowed: 3 Hours] [Maximum Marks: 40

Note: The candidates are required to attempt two questions each from section A and section B carrying 6 marks each and the entire Section C consisting of 8 questions carrying 2 marks each.

SECTION-A

- 1. (a) Show that the set $B = [1, x, x^3, ..., x^m]$ of m+1 polynomials is a basis set for the vector space of polynomial of degree m over R. 3
 - (b) Show that the vectors (1, 2, 3), (0, 1, 2) and (0, 0, 1) generates $V_3(R)$.

- Let V(F) is finitely generated vector space, prove that any maximal linearly independent subset of V is a basis of V.
- 3. If v_1 , v_2 are finite dimensional subspaces of a finite dimensional vector space V(F). Prove that v_1+v_2 is also finite dimensional and

$$\dim(v_1 + v_2) = \dim v_1 + \dim v_2 - \dim(v_1 \quad v_2).$$
 6

4. Prove that any linearly independent set in V(F) can be extended to a basis of V.

SECTION-B

- 5. Let $V = R^3$ and at Tiv V be the linear transformation defined T(x, y, z) = (2x, 4y, 5z). Find the matrix of T w.r.t. basis $(\frac{2}{3}, 0, 0), (0, \frac{1}{2}, 0)$ and $(0, 0, \frac{1}{4})$.
- 6. Prove that if V(F) and W(F) are finite dimensional, then the vector space of all linear transformations from V to W is also a finite dimensional vector space and its dimension is equal to (dimV)(dimW).

2

4421/MH/596/W

- 7. Let T be a linear operator on IR³ defined by T(x, y, z) = (2x, 4x y, 2x + 3y z). Show that T is invertible and find T^{-1} .
- 8. Prove that characteristics and minimal polynomial of an operator of matrix have same irreducible factors.

SECTION-C

- 9. (i) Write (1, -2, 5) as a linear combination of the vector (1, 1, 1), (1, 2, 3), (2, -1, 1).
 - (ii) Prove that superset of linearly dependent set of vectors is linearly dependent.
 - (iii) Define co-ordinate vector relative to the basis S of vector space V(F).
 - (iv) Let W be subspace of vector space $V_3(R)$ generated by $\{(1,0,0),(1,1,0)\}$. Find $\frac{V}{W}$ and its basis.
 - (v) Let T: V W be a linear transformation. Prove that range T is a subspace of W(F).

3

- (vi) Define a singular transformation.
- (vii) Prove that inverse of invertible operator is unique.
- (viii) Find characteristic polynomial of $T: R^2$ R^2 defined by T(x, y) = (x + 2y, 3x + 2y).

 $2 \times 8 = 16$